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SOME RELATIONS IN THE
MOD 3 COHOMOLOGY
OF H-SPACES

BY
A.ZABRODSKY

ABSTRACT

A third order non stable operation is constructed. Its domain and range are a
linear subspace and a quotient space of the mod 3 cohomology but it represents
a non linear transformation. Using this operation some relations over the
Steenrod algebra in the module of primitives in the cohomology of an H-space
are derived even in the 3 torsion free case.

The study of non stable mod p operations proved to be useful in the
investigation of the cohomology of H-spaces (sce e.g. Thomas [11], Browder [1],
[2], Hubbuck [4], Zabrodsky [12], Lin [6]). The operations studied were either
high order Bockstein operations or secondary operations induced by relations in
the (non stable) Steenrod algebra following from

R): excess P">2n -1,
R), excess BP" >2n.

For p >2 (R), was useful only when some associativity properties were available
(e.g. for p =3 homotopy associativity was essential). The higher Bockstein
operations and those related to (R). provided information involving even
dimensional generators and torsion. It seemed that very little could be said about
a non associative mod odd H-space with exterior cohomology algebra. The fact
that products of odd spheres are mod odd H-spaces supported this view: At least
no limitations on the type of a mod odd H-space exist.

The first evidence that some relations in the cohomology of a mod odd
H -space must be present was discovered by Mimura and Toda (see Mimura [8]).
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They proved that By(3) and Bs(3) (see Mimura [7]) are not mod 3 H-spaces
although B.(p)’s, p > 2, are all w-power spaces (in the sense of Zabrodsky [14]).

The purpose of this paper is to give a cohomology operations interpretation to
these results of Mimura and Toda whose paper, needless to say, strongly
motivated this study. I would like to thank John Harper for suggesting the
possible existence of a general pattern related to the Mimura-Toda results.

In some sense this note complements the results in Harper-Zabrodsky [3]
showing them to be the best possible for p = 3. We suspect similar results hold
for p >3 but involve p-th order operations.

The main object of study in this paper is a third order operation ¢ with a
universal example (£, E, y) where E is an H-space (with three non vanishing
homotopy groups), £-primitive while y is a non primitive generator. Hence for
an arbitrary space domain ® C H*'(X, Z,) and target ® are linear spaces while ®
is not a linear transformation. More precisely:

THEOREM 1. Let a, n be positive integers, 1=a =2, (2"')#0 (mod 3).
Consider the relations

() excess PP >2(n+a)—-1, PP = 0.

Then
(i) 0=(P> % P P")asanoperationon =2(n+ a)— 1dimensional classes.
(ii) (i) induces a third order operation ¢, with a universal example: (£, E, y),
E —an H-space £ € PH*****"(E, Z,) and y is a non primitive generator with
reduced coproduct

(a=2) i*y=P'% - IQI+IQP'E %,
(a=1) G*y =% - PEIQPI+PEIQRi Pi+PR - iQi+iQP% -

=

Hence if z1,2,€ H*"*" (X, Z) are in domain®, so is z,+ z, and

(@=2)  Gu(z1+22)= Pu(2)+ Gu(22)+ P2y 2, 22+ 2, P2, 2,
Gu(z1+ 22) = ba(2)+ bu(2)+ 21- P2y P2+ P2y 2,- P2y

(a=1) + P’z 20 22+ 2, P2y 2o

The applications to mod 3 H-spaces are illustrated by:

THEOREM 2. Let X be a mod 3 H-space with primitively generated rational

cohomology and H*(X, Z,) an exterior algebra on odd dimensional generators. If
x €E PH""(X,Z;), m =1 or 3 and P*"x =0 then P'x € im P’x.
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CoroLLARY. If n+1#0 (mod 3) then B.(3) are not mod 3 H-spaces (e.g.
O(6n +5)/O(6n + 1) is not a mod 3 H-space).

ProoF OF CoOROLLARY. H*(B.(3),Z:) = A(X2ns1, P'X2ns1). U n+1#0
(mod3), 2n+1=6m +2a—1, a=1,2 and by Theorem 2 this cannot be a
cohomology of a mod 3 H-space

The paper is organized as follows: In Section 1 we compile some known facts
and their immediate consequences regarding H-structures and homotopy as-
sociative and homotopy commutative invariants. We use these in the proof of
Theorem 1 in Section 2. Theorem 2 is proved in Section 3.

1. H structures, homotopy associativity and homotopy commutativity invar-
iants

We use notations and follow the proofs of Zabrodsky [13], though the notions
discussed could be traced back to Kudo-Araki [5], Browder [2] and Stasheft 9],
[10].

1.1. (See Zabrodsky [13] (1.18), (2.1), 2.2), 3.2).) (@) Let f F: X, u > X", '
be an H map, F:fou ~u'o(f X f). Then f, F, u, u' induce a multiplication ug
on E =fiber f. If * ~f with a homotopy !:X — %X’ then there exists
h:XxQX'=E and the multiplication in X X QX' induced by h and ug is
given by

5A)-(x,A)=w(,x )+ A+ A,
where w = w(l, F): X A X —> QX' is given by
woA=lop+F-Fu'o(Ixl): XxX—->QX".
(b) Let a: X - QX'. Then:
wa+LF)-w(LF)=p*a: X A X—> QX'
where g*:[X, QX'|—[X A X,QX'] is given by
Atog*=p*-pi-p3: [ X, QX' ]->[X X X,QX],
A X A X 0X']—-[X XX, QX'].
1.2. (See Zabrodsky [13] 2.5.) Let X, u, A and X', u’, A’ be homotopy
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associative H-spaces (abr: HA spaces). A:po(pw X1)~po(1xpu). Let

fF:X,p—X',u" be an H-map. f, F, A, A’ define an HA invariant
6(f,FFA L AYEIX A X A X, QX']

with the following porperties:
(a) Composition: Given HA spaces (X, p, A), (X', ', A"), (X", u", A") and
H-maps

FE: X u—X'u',
fOF X X,

then:

0((f',F)e(f, F),A,A") = Qf o 0(f, LA, A+ 0(f,F, A", A"Ye(f A f A f).

(b) Dependence on H-structure: If v: X A X —» QX' then

0f,v+FA AN-0(fFFA A)=div: XA XA X->0X',
d, given by
Atod={[(n X 1)* = (P X D* = (p2x 1)*]
—[(Axp)* = (1Axp)* = (1x p)*leA*

[X A X, QX —2 5 [X A X 2 X, QX]
s A
[Xx X, QX —— [X X X X X, QX]
() f(f,F): X,un — X', " is an H-map of HA spaces X, u, A; X', u', A’ and
a:f~fthenf,ﬁ'=f, —aou+F+ PPu'e(a Xa)is an H-map and
0(fF,A,AY=0(f F, A A".

d) Iff,F: X, u— X', u' is actually multiplicative (i.e. fou = pu'o(f X f) and
F is the constant homotopy), X, u,A; X',n’, A" are HA and f~ * then

9(fF,A,A")=0.

(e) Let f: Y — Y'be a map. Then QY, QY have obvious HA structures A,
A'respectively and Qf is multiplicative with a constant homotopy F. In this case

0(f,F, A, A")=0.
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1.2.1. Lemma. Let fF:X,u— X', n' be an H-map of HA spaces X, u, A
and X', u', A'. If % ~ f then for any choice of homotopy | :* ~ f

0(f,F,A,AY=d,w(l F).
ProOF. As in 1.2(c) ! induces an H-structure F for f = * and one can easily
see that £ = w(l, F). By 1.2(b) and (d)
0(f,FA AY=0(*x,w(LF),A,A)=0(*,*, A, A"Y+dw(LF)
=d,w(l, F).

(The independence on choice of [ follows from diw(a+ [ F)=d\ad*a+
de(l, F) and d1,lz *= 0)

1.3. Lemma. Let f: K(Z,2n)— K(Z,,6n) be given by f * 16, = ). Pt E =
fiber f. Then one has an H-map

[ F:K(Z,2n-1)>QE = K(Z,,2n~1)X K(Z,,6n - 2)
and if A, A’ are the loop A -structures of K(Z,,2n — 1) and QLE respectively then
0(f,F',A,A"): K(Z,2n—1) r» K(Z,,2n — 1) A K(Z,,2n ~ 1) > Q’E factors as

K(Z,,2n — 1) A K(Z,2n — 1) A K(Z,, 2n — 1) 22222205 g (760 - 3)— O’E.

ProoF. In view of 1.1(a) the existence of the H-map f’, F’ will follow from the
existence of | :* ~ Qf so that if F = k is the constant H-structure of Qf then
w(l, k)= 0. By Zabrodsky [13] 3.2.2 one has a natural homotopy [ : * ~ QA so
that if k is the constant H-structure of the multiplicative map

QA :QK(Z,2n)— QUK (Z,2n) r K(Z,,2n))
then the adjoint of
w(l k): QK(Z,, 2n) » QK(Z,,2n)— V(K (Z,,2n) » K(Z,,2n))
is given by

(EAE)T

SYQK(Z,2n) A QK (Z,,2n)) = 3QK(Z,,2n) r SQK (Z,, 2n)

—> K(Z,,2n) n K(Z,,2n)

(€ :30QK(Z,2n)— K(Z,,2n)—the evaluation).
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Now f: K(Z,, 2n)— K(Z,,6n) factors as

fl/\l

K(Z, 2n)—> K(Z,,2n) A K(Z,,2n)

——K(Z,,4n) A K(Z,,2n)—> K(Z,,6n),

frian =13 U¥ten = tan & t2n. Choose 1:% ~ Qf by
= (£Qu)e(LOf A 1))o .
Then one can easily see that
w(l, k)= Q% Qf, n1)ow(f k),
[(wLk)s=uce(finl)o€E AEeT=uc(filc€ A E€)T.

But as (fic€)=Qfi~* w( k)u~*~w(Lk). Now, if f F"
K(Z,,2n —1)—> QE satisfies 8(f, F, A, A’)=0 then one has a map

fi:Bs(K(Z,,2n - 1))> E

(B;—the third stage of the classifying space of K(Z,,2n — 1), see Stasheff [10]),
7 (fi)-injective. Now (K(Z,2n),Bs(K(Z,,2n—1))) is 8n—1 connected,
m(E)=0 for k=z6n and there are no obstructions to extend f; to
fo:k(Z,2n)— E, 7 (fx)-injective which will yield the contradiction:

E~K(Z,2n)xK(Z,6n-1) or 3.=0.

Hence,0# 0(f,F,A,A"): K(Z,,2n—1) A K(Z,2n - 1) A K(Z,,2n - 1)—> Q’E.
This map lifts (in a unique way) to

0#6:K(Z,2n-1)rK(Z,,2n - 1) A K(Z,,2n ~1)—>
— K(Z,,6n - 3)= K(Z,,2n —1).
Hence,
0*ton3=A(ton-1Q 1201 R ton-1), O0FAEZ,

One can change the representation of E = K(Z,,2n — 1) X K(Z,, 6n — 2) by self
equivalence so that A = 1.

1.4. Let x, u, C and X', ', C' be homotopy commutative H-spaces. (abr. HC
spaces. C:pu ~poT).Iff, F: X, u — X', u' is an H-map one has an invariant
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yECCY): XA X->QX'
so that:

(a) Composition: If X", u", C"is a third HC space, f', F': X', u’— X", 1" an
H-map then:

¥(f, F)o(f, F), G, C") = Q"o y (£ F,C, C) + (', F', C', C")o(f  f).

(b) Dependence on H-structure: If o : X A X — QX' then

y(,a+ECC)-y((LECC)=(1~T"a,

T:X A X— X an X —the twisting, T(x,y)=y,x.
() ¥ f,F:X,p— X', u' satisfies f ~ * then
Yy, FCC)=(1-T*)w(l,F) foranychoiceof!:* ~ f.
15. Lemma. Let X u, C; X,u,C', X", u",C" be HC spaces,
LE:Xu->Xu, fo,F: X u'—> X" pn" H-maps and y(f',F',C',C")=0.

Suppose the elements of [X » X, Q2X') can be halved and multiplication by 2 is
injective in [ X A X,QX"]. If f'of ~ * then F can be chosen so that

y((f, F)=(f, F),C,C")=0.

ProOF. Start off with an arbitrary H-structure E for f. Now choose
F=-yfECC)+E
By 1.4(b)
YA ECC)=y({FCC)-(1-THv(ECC)
=1+ Ty FCO).
By 1.4(c), i f'of, F = (f', F')o(f, F) then
y((f', F)e(f, F),C,C") = (1- T*)w(, F).
Finally by 1.4(a) and as y(f', F’,C',C")=0
v[(F, F)e(f, F), G C'1=Qf y(f, F, G C)
=1+ THBOf Y E G C)).

As multiplication by 2 is injective in [X A X,QX"] one can easily see that
im(1+ T* N im(1-T*) =0 and y((f', F")=(f, F),C,C")=0.
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2. Proof of Theorem 1

Consider the following commutative diagram of %-loop spaces and maps:

K(Zy, N +4n—-1) > K(Zy, N +4n+4a-1)

l

E, = fiber (") — ' S B =fiberpm—" K(Z;,N+4n+11)

G |

K(Z5, N) ——————K(Z5 N) E, = fiber (P**)

i(tg")

K(Zy, N+4n) — 2 S K(Z,, N+4n+4a)"2"5 K(Zs, N + 4n + 12)

As P*°P° =0, doh factors as w or, for some
w : K(Zs, N)— K(Zs, N + 4n + 11).

For N=2n+2a—1, E;~K(Z;2n+2a-1)x K(Zs,6n + 6a —2) and by
1.3 this is an H-equivalence with respect to the ®-loop multiplication of E, and
the product multiplication on K(Z;,2n +2a — 1)x K(Z5,6n +2a —2).

If i, F:K(Z;2n+2a—1)>K(Z5,2n+2a—1)x K(Zs,6n +6a —2)~E, is
an H-map A, A’ the »-Q HA structures of K(Zs,2n + 2a — 1) and E, respec-
tively, then by 1.3 we know 8(i, F, A, A'): If Ko = K(Z,,2n +2a — 1) then

oS Xoze 1
Ko Ko A Ke——— K(Z5,6n + 6a — 3)
(B) 0()=0GFEAA) | Qj
QF, =~ QKo X K(Zs,6n + 6a — 3).
Consider the following part of diagram (A)x for N =2n +2a — 1:
K(Z,,6n + 6a —2)

J i1 @e

Ei—> Ei~K(Z5,2n +2a - 1) X K(Z5,6n + 6a — 2)— K(Zs, 6n + 2a + 10)

Then:
D*tenrzar0=Z2 Q1 +1& P> tgnsba2s
z € PH*"***'%K(Z5,2n + 2a — 1), Z5). Let z denote its stable class as well:

z € PHN"*"*'(K(Z,,N), Z,).
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Replacing v by v — F,z if necessary (and altering ¥ and w accordingly) one may
actually assume that z =0 and for N=2n +2a -1

P =1Q P "

If N=2n-1 one has E,=~K(Z,2n-1)xK(Z:6n-2), E,=
K(Zs,2n - 1)X K(Zs,6n +4a—=2),  h*(IX tonrsas) =y @1+ 1® Pen2,
y € PH""**"K(Z;,2n — 1), Z5) and h*ed* = h*(1Q P> “tonsraaz) =
Py ®1.

Obviously o¥>""'w = P*%y. Let § € HY**"***"(K(Z3,N), Z5) denote the
stable class of y: o'y =y. Then w— P> ) Ekera™ "', But o™ **":
HY*"*"(K(Z5,N),Zs) - H*"'(K(Zs,2n—-1),Z;) is injective, hence, w =
P>°9. Now alter h in (A)x by —j,o§ or if necessary and as

d(h—fiofor)=0ch—dofiofofy=wor,— P *for,=0
one could have assumed deoh ~ *. Put x, = r¥unia1 € H*** (E\, Z;), y,: =
h*(1 ® tonsea—2) € H™"XE,, Z;) then ;= (x, Es,y:) defines an operation
with domain ker 2" | H*****7'( | Z,).

D*ton2a+0 = 1Q P> “tgni6a—2 and deh~* imply P>, =0, 0=
(P4, P, P") and (i) follows.

Do h ~ = implies that h factors through fiber § which for N=2n+2a-1is
equivalent to

K(Z:,2n+2a-1)xE,
E = fiber [(P*°): K(Zs, 6n + 6a — 2)— K(Zs,6n + 2a + 10)].

Now the operation ¢ = ¢, of Theorem 1 (ii) is defined in the space
E, = fiber[(y.): E:— K(Z,,6n + 6a — 2)] as its universal example. An alterna-
tive and equivalent definition of E, can be given in terms of the following pull
back diagram:

K(Zs,6n + 6a — 3) == K(Zs 6n +2a +9)
| |
E,—2> K(Z,2n +2a — 1) X K(Zs,6n + 2a + 9)— K(Z5, 2n + 2a — 1)
1!2 pull back 1 xj pull back li

Ei—s K(Zs,2n +2a - 1)X B~ K(Zs,2n +2a — 1) X K(Zs,6n + 6a — 2)
L _4
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¢. then has the universal example (£, Ez, y), X = r3rTizmeza-1, ¥y = (P1°h2)%,, o0 .-
The bottom row consists of ©-{2 spaces and maps and are given the correspond-
ing H, HA and HC structures. i is an H-map and any choice of H-structure for i
will yield H-structures for the spaces in the second row. Thus, the H-structure of
K(Z5,2n+2a - 1) X K(Z5,6n + 2a + 9) could be considered as induced either
as a pull back or equivalently as the fiber of ¢ ¢i whose H-structure is induced by
the -} structure of ¢ and a choice of an H-structure for i. By 1.5 such an
H-structure can be chosen so that y(6¢i) =0 and the H-structure induced on
K(Z3,2n+2a ~1)x K(Z5,6n +2a +9) is HC: If this H-structure is given by a
twisting

w:K(Zy,2n+2a-1)AK(Zs,2n+2a-1)—> K(Z;,6n+2a +9)

then w o T ~ w. By 1.2, and diagram (B), if u is the multiplication in K(Z,,2n +
2a — 1) then (omitting the H-structures of maps and HA structures of spaces)
recalling that 6(d)=0:

E*QI-1Qup*)w =6(Dci)=6(B)[irini)+Quod(i)

=Q6°0()=(QF /)t @1 @) =P (1 Q@)

PR D+ IRP R+ QLRQP for a =2,

{ PLRPIRAIPIRRPLHRPLRP

FPUR D RPURF L QLRQPY for a=1.

It wo: K(Zs,2n +2a — 1) A K(Zs,2n + 2a — 1)— K (Zs, 6n + 2a + 9) is given by
{ P i@+ @P e for a =2

Wo=

- PURPUAAP R PP Qi+ QP fora=1

then w —woEker(z*®@1-1Q a *)Nker (1 — T*) which implies that w — w, €
img*. Hence, altering K(Zs,2n+2a~1)XK(Z;,6n+2a+9) by a self
equivalence if necessary one may assume W = w,-(X, E,y) with E=E,, £ =
(rier)*taneza-1, ¥ = B3(1 Q) ton+2049) is the desired operation.

3. Proof of Theorem 2

3.1. Lemma. Let X, be a mod p H-space with H*(X, Q; u)-primitively
generated. Suppose either X is finite dimensional (mod p) or w.(X)=0 for
n > N(X).
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Let A be any integer and ¢, the A-th power map induced by u. (ForA = —1,®_,
is the multiplicative inverse; for A >0,
¢,\ =/.L°(/.L X1)°"'°([~L X1X +«» Xl)°(A><1X X1)°"'°(AX1)°A;

for A <0 take ¢, = p_1oP_,.)
Then there exist an H-space X, i modp equivalent to X,p, and a map
by : X — X so that

)
X——X
=r ‘l’ ‘L =p
PO
X—X
is (homotopy ) commutative and so that for somer, (, )" is an H-map. Moreover,

H*(X,Q;4)~H*X,Q;uw) as Hopf algebras.

Proor. This is basically a special case of an H-space with identity (Zab-
rodsky [15] 4.5). One starts by approximating X by an H-map

bo: X —>[] K(Z, 1) = K,
i
K, having the product multiplication w,. Decompose ¢, as
X—E»X@)=X—%;»Kd

(Zabrodsky [13] 4.3) and X then admits an H-structure u (p) and a self map é,
induced by u and ¢, respectively. One has a commutative diagram

F

XvX—s X xR, g X
Vavd | dxd bar e
XvX—sXxX2 g %

As u(p): X x X — X is a lifting of we(" X ") one can apply Zabrodsky [15]
theorem 3.1 (with the (3.1.b)" hypothesis and remark 3.10.3) to obtain a lifting
p:XxX-X 4|XvX=%F and ($)"ofd ~fho(d X b)) where m =
[ sneyexp . (fiber "), hence m is a power of p and 3.1 follows. (The fact that ¢"
isa fi —wo H-map implies H*(X, Q; u(p))= H*(X, Q; 4).)
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3.2. LeMMA. Let p be an odd prime. Given H-spaces X, i, Y, u, Yo, o With
self Hmaps d : X > X, ¢': Y —> Y and ¢i: Yo— Y,. Assume QH™(X, Z,) =
0, OH*(¢v ZP)= -1, W*(¢l)®zp =-1 W*(¢6)®ZP =-L Let

g: y =22, Yo, fo: X = Y, be H-maps and ¢'— ¢o, ¢ — Ppo maps respectively,
ie.,

god' ~doog;  food ~ docfo.
Assuming m,(fiberg) =0 for n-odd and for n =Z N then if f, liftstoamap X =Y

it lifts to an H-map. Moreover any ¢* —(¢')" lifting (i.e., f: X — Y with
fod™ ~(¢'Y °f) is an H-map.

Proor. By Zabrodsky [15] 3.1 if f, lifts it lifts to a ¢* — (¢')"" map, hence
suffices to prove that every such map is an H-map. Obviously one may
conveniently assume r = 0.

Given a ¢—¢' map f:X—Y consider its H-deviation HD(f)=
HD(f,g,u): X nX— Y. As g and f, are H-maps fo~ g°f, g HD(f)~ * and
HD(f)~jow,w: X A X >V =fiberg, j: V— Y. Decompose V as follows:

% = V('n)__) v(m—l)_) RN V(k)-—> V(k—l)__) RN V(0)= \ %

V® m. — 1 connected, V¥V V® is the fiber of . : V¥ - K(G, mi), G, =
T (V) R Z,, T, (1) the obvious morphism. Note that by assumption m, are
even.

Suppose inductively that HD(f) lifts to wi : X A X > VY HD(f) = ji o wi,
i : V&> Y. Now, HD(f)° A = D,«yxp sz and as @, ¢' are H-maps and f is a
¢ — ¢’ map one has: HD(f)o(¢ A ¢) = ¢'oHD(f).

¢', ¢4 induce self maps ¢i: V®— V® and ji is a . — ¢’ map as well as an
H-map. Hence:

* = D ppiyeners oD@ = D jometons) drpom,
= D jemeiororicedion, = JkD woton).diom,
and one can replace wi by

. p—1
Wie = Wi + 5 Dwk°(¢A¢)‘¢‘°wk'

Now, 7, (VR Z, = — 1= 7 ,($0) QR Z, implies (possibly after some p° itera-
tions) 7, ()@ Z, = —1 and hence —r. =r.°di.



Vol. 33, 1979 RELATIONS IN COHOMOLOGY OF H-SPACES 71
N -1
oW = e Wy +L2'—[rk°wk°¢) A 4) _rk°¢L°Wk]

-1
=1 oW +L2"[rk°wk°¢/\¢+rk°wk],

reow, € H™(X A X, G)= H™(X 7 X, Z,)® G..

As QH*(X,Z,)=0, QH*(¢, Z,) = — 1 it follows that H**(¢ A ¢, Z,)=1=
H™(¢p A ¢, G,) and roow, o(p A P) =1 ows.

Hence rcew, =proew, =0 and w, lifts to wi.: X A X—> Viy. V,, =%
implies 3.2.

3.3. ProoF oF THEOREM 2. Given X, 4 a new multiplication 4 as in 3.1 for
p =3and A = — 1: ¢_,—the multiplicative inverse of u (and essentially of /i as
well). As H*X,Qu)=H*X,Q,1) and H*(X,Z) is 3-torsion free
H*X,Zs;n)=H*(X,Z5,4) as a Hopf algebra, QH*(¢-,,Z;)= —1=
PH*(¢-,, Z5).

Let x € PH*"***7'(X, Z5) be realized by an H-map f,: X — K(Z5,6n +2a —
1) = K,. Obviously focd_1~ ¢o°fo, do= —1: Ko— K. Let E, be the space in
(A)~ (the proof of Theorem 1) for N = 6n +2a — 1, and replace n by 3n. Let
¢': E,— E, be the multiplicative inverse of the loop multiplication in E,. As
fiber E,— K, is K(18n + 2a - 2, Z;), by 3.2, if f, lifts to f,;: X — E, it lifts to an
H-map. f, lifts if and only if #*"x =0. E,— E, in (A)x is the fibration included
by an H-map E,— K(Z3,18n + 6a —-2) and as PH"*"**"*(X, Z,) =0 f, lifts to
fr: X > E,.

HD(f>) = j.- w, w:X A X—K(Z;5,18n + 6a —3)
and
Arfiy =(f1QfHa*v+ P w,

hence:
(@) a=2,[x|=6n+3

(a.1) L3y =Px xQx+xQPx x+P'w

reduce H*(X, Z,) by the ideal I generated by @wsnn PH™ (X, Z5).
B)a=1,|x|=6n+1

Ay =Px x@x+x QP - x
B.1) +x - PxR@RPx+P'xRQx-P'x + P'w
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and reduce by the ideal I generated by @mws PH™ (X, Zs) (and (B.1) thus
loses its first two terms in the left hand side of the equation).

In both cases if ?'x & im ?? the quotient algebra H*(X, Z,)/I has the form
A @ A(x,P'x) as an algebra over Z,[P")/(P')’ CL(3). Reducing mod A one
will have (a.1) or (B.1) holding in A(x, ?'x) which is impossible.
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