

SOME RELATIONS IN THE MOD 3 COHOMOLOGY OF H -SPACES

BY
A. ZABRODSKY

ABSTRACT

A third order non stable operation is constructed. Its domain and range are a linear subspace and a quotient space of the mod 3 cohomology but it represents a non linear transformation. Using this operation some relations over the Steenrod algebra in the module of primitives in the cohomology of an H -space are derived even in the 3 torsion free case.

The study of non stable mod p operations proved to be useful in the investigation of the cohomology of H -spaces (see e.g. Thomas [11], Browder [1], [2], Hubbuck [4], Zabrodsky [12], Lin [6]). The operations studied were either high order Bockstein operations or secondary operations induced by relations in the (non stable) Steenrod algebra following from

$$(R)_1 \quad \text{excess } \mathcal{P}^n > 2n - 1,$$

$$(R)_2 \quad \text{excess } \beta \mathcal{P}^n > 2n.$$

For $p > 2$ $(R)_1$ was useful only when some associativity properties were available (e.g. for $p = 3$ homotopy associativity was essential). The higher Bockstein operations and those related to $(R)_2$ provided information involving even dimensional generators and torsion. It seemed that very little could be said about a non associative mod odd H -space with exterior cohomology algebra. The fact that products of odd spheres are mod odd H -spaces supported this view: At least no limitations on the type of a mod odd H -space exist.

The first evidence that some relations in the cohomology of a mod odd H -space must be present was discovered by Mimura and Toda (see Mimura [8]).

Received May 4, 1978

They proved that $B_9(3)$ and $B_{15}(3)$ (see Mimura [7]) are not mod 3 H -spaces although $B_n(p)$'s, $p > 2$, are all π -power spaces (in the sense of Zabrodsky [14]).

The purpose of this paper is to give a cohomology operations interpretation to these results of Mimura and Toda whose paper, needless to say, strongly motivated this study. I would like to thank John Harper for suggesting the possible existence of a general pattern related to the Mimura-Toda results.

In some sense this note complements the results in Harper-Zabrodsky [3] showing them to be the best possible for $p = 3$. We suspect similar results hold for $p > 3$ but involve p -th order operations.

The main object of study in this paper is a third order operation Φ with a universal example (\hat{x}, E, y) where E is an H -space (with three non vanishing homotopy groups), \hat{x} -primitive while y is a non primitive generator. Hence for an arbitrary space domain $\Phi \subset H^{|\mathbb{X}|}(X, \mathbb{Z}_3)$ and target Φ are linear spaces while Φ is not a linear transformation. More precisely:

THEOREM 1. *Let a, n be positive integers, $1 \leq a \leq 2$, $\binom{2n-1}{a} \not\equiv 0 \pmod{3}$. Consider the relations*

$$(r) \quad \text{excess } \mathcal{P}^a \mathcal{P}^n > 2(n+a) - 1, \quad \mathcal{P}^{3-a} \mathcal{P}^a = 0.$$

Then

- (i) $0 = \langle \mathcal{P}^{3-a}, \mathcal{P}^a, \mathcal{P}^n \rangle$ as an operation on $\leq 2(n+a) - 1$ dimensional classes.
- (ii) (i) induces a third order operation ϕ_a with a universal example: (\hat{x}, E, y) , E — an H -space $\hat{x} \in PH^{2n+2a-1}(E, \mathbb{Z}_3)$ and y is a non primitive generator with reduced coproduct

$$(a=2) \quad \bar{\mu}^* y = \mathcal{P}^1 \hat{x} \cdot \hat{x} \otimes \hat{x} + \hat{x} \otimes \mathcal{P}^1 \hat{x} \cdot \hat{x},$$

$$(a=1) \quad \bar{\mu}^* y = \hat{x} \cdot \mathcal{P}^1 \hat{x} \otimes \mathcal{P}^1 \hat{x} + \mathcal{P}^1 \hat{x} \otimes \hat{x} \cdot \mathcal{P}^1 \hat{x} + \mathcal{P}^2 \hat{x} \cdot \hat{x} \otimes \hat{x} + \hat{x} \otimes \mathcal{P}^2 \hat{x} \cdot \hat{x}.$$

Hence if $z_1, z_2 \in H^{2n+2a-1}(X, \mathbb{Z}_3)$ are in domain Φ_a so is $z_1 + z_2$ and

$$(a=2) \quad \phi_a(z_1 + z_2) = \phi_a(z_1) + \phi_a(z_2) + \mathcal{P}^1 z_1 \cdot z_1 \cdot z_2 + z_1 \cdot \mathcal{P}^1 z_2 \cdot z_2,$$

$$\phi_a(z_1 + z_2) = \phi_a(z_1) + \phi_a(z_2) + z_1 \cdot \mathcal{P}^1 z_1 \cdot \mathcal{P}^1 z_2 + \mathcal{P}^1 z_1 \cdot z_2 \cdot \mathcal{P}^1 z_2$$

$$(a=1) \quad + \mathcal{P}^2 z_1 \cdot z_1 \cdot z_2 + z_1 \cdot \mathcal{P}^2 z_2 \cdot z_2.$$

The applications to mod 3 H -spaces are illustrated by:

THEOREM 2. *Let X be a mod 3 H -space with primitively generated rational cohomology and $H^*(X, \mathbb{Z}_3)$ an exterior algebra on odd dimensional generators. If $x \in PH^{6n+m}(X, \mathbb{Z}_3)$, $m = 1$ or 3 and $\mathcal{P}^{3n} x = 0$ then $\mathcal{P}^1 x \in \text{im } \mathcal{P}^2 x$.*

COROLLARY. *If $n + 1 \not\equiv 0 \pmod{3}$ then $B_n(3)$ are not mod 3 H -spaces (e.g. $O(6n + 5)/O(6n + 1)$ is not a mod 3 H -space).*

PROOF OF COROLLARY. $H^*(B_n(3), \mathbb{Z}_3) = \Lambda(x_{2n+1}, \mathcal{P}^1 x_{2n+1})$. If $n + 1 \not\equiv 0 \pmod{3}$, $2n + 1 = 6m + 2a - 1$, $a = 1, 2$ and by Theorem 2 this cannot be a cohomology of a mod 3 H -space

The paper is organized as follows: In Section 1 we compile some known facts and their immediate consequences regarding H -structures and homotopy associative and homotopy commutative invariants. We use these in the proof of Theorem 1 in Section 2. Theorem 2 is proved in Section 3.

1. H structures, homotopy associativity and homotopy commutativity invariants

We use notations and follow the proofs of Zabrodsky [13], though the notions discussed could be traced back to Kudo–Araki [5], Browder [2] and Stasheff [9], [10].

1.1. (See Zabrodsky [13] (1.18), (2.1), (2.2), (3.2).) (a) Let $f, F : X, \mu \rightarrow X', \mu'$ be an H map, $F \circ \mu \sim \mu' \circ (f \times f)$. Then f, F, μ, μ' induce a multiplication μ_E on $E = \text{fiber } f$. If $* \sim f$ with a homotopy $l : X \rightarrow \mathcal{L}X'$ then there exists $h : X \times \Omega X' \approx E$ and the multiplication in $X \times \Omega X'$ induced by h and μ_E is given by

$$(x, \lambda) \cdot (x', \lambda') = w(x, x') + \lambda + \lambda',$$

where $w = w(l, F) : X \wedge X \rightarrow \Omega X'$ is given by

$$w \circ \Lambda = l \circ \mu + F - \mathcal{L}\mu' \circ (l \times l) : X \times X \rightarrow \Omega X'.$$

(b) Let $\alpha : X \rightarrow \Omega X'$. Then:

$$w(\alpha + l, F) - w(l, F) = \bar{\mu}^* \alpha : X \wedge X \rightarrow \Omega X'$$

where $\bar{\mu}^* : [X, \Omega X'] \rightarrow [X \wedge X, \Omega X']$ is given by

$$\Lambda^* \circ \bar{\mu}^* = \mu^* - p_1^* - p_2^* : [X, \Omega X'] \rightarrow [X \times X, \Omega X'],$$

$$\Lambda^* : [X \wedge X, \Omega X'] \rightarrow [X \times X, \Omega X'].$$

1.2. (See Zabrodsky [13] 2.5.) Let X, μ, A and X', μ', A' be homotopy

associative H -spaces (abr: HA spaces). $A : \mu \circ (\mu \times 1) \sim \mu \circ (1 \times \mu)$. Let $f, F : X, \mu \rightarrow X', \mu'$ be an H -map. f, F, A, A' define an HA invariant

$$\theta(f, F, A, A') \in [X \wedge X \wedge X, \Omega X']$$

with the following properties:

(a) Composition: Given HA spaces (X, μ, A) , (X', μ', A') , (X'', μ'', A'') and H -maps

$$f, F : X, \mu \rightarrow X', \mu',$$

$$f', F' : X', \mu' \rightarrow X'', \mu'',$$

then:

$$\theta((f', F') \circ (f, F), A, A'') = \Omega f' \circ \theta(f, F, A, A') + \theta(f', F', A', A'') \circ (f \wedge f \wedge f).$$

(b) Dependence on H -structure: If $v : X \wedge X \rightarrow \Omega X'$ then

$$\theta(f, v + F, A, A'') - \theta(f, F, A, A') = d_1 v : X \wedge X \wedge X \rightarrow \Omega X',$$

d_1 given by

$$\begin{aligned} \Lambda_2^* \circ d_1 = & \{ [(\mu \times 1)^* - (p_1 \times 1)^* - (p_2 \times 1)^*] \\ & - [(1 \times \mu)^* - (1 \times p_1)^* - (1 \times p_2)^*] \} \circ \Lambda^* \\ [X \wedge X, \Omega X'] \xrightarrow{d_1} & [X \wedge X \wedge X, \Omega X'] \\ \downarrow \wedge^* & \downarrow \wedge_2^* \\ [X \times X, \Omega X'] \longrightarrow & [X \times X \times X, \Omega X'] \end{aligned}$$

(c) If $(f, F) : X, \mu \rightarrow X', \mu'$ is an H -map of HA spaces X, μ, A ; X', μ', A' and $\alpha : f \sim \tilde{f}$ then $\hat{f}, \hat{F} = \tilde{f}, -\alpha \circ \mu + F + PP\mu' \circ (\alpha \times \alpha)$ is an H -map and

$$\theta(f, F, A, A') = \theta(\hat{f}, \hat{F}, A, A').$$

(d) If $f, F : X, \mu \rightarrow X', \mu'$ is actually multiplicative (i.e. $f \circ \mu = \mu' \circ (f \times f)$ and F is the constant homotopy), X, μ, A ; X', μ', A' are HA and $f \sim *$ then

$$\theta(f, F, A, A') = 0.$$

(e) Let $f : Y \rightarrow Y'$ be a map. Then $\Omega Y, \Omega Y'$ have obvious HA structures A, A' respectively and Ωf is multiplicative with a constant homotopy F . In this case

$$\theta(f, F, A, A') = 0.$$

1.2.1. LEMMA. *Let $f, F : X, \mu \rightarrow X', \mu'$ be an H -map of HA spaces X, μ, A and X', μ', A' . If $* \sim f$ then for any choice of homotopy $l : * \sim f$*

$$\theta(f, F, A, A') = d_1 w(l, F).$$

PROOF. As in 1.2(c) l induces an H -structure \hat{F} for $\hat{f} = *$ and one can easily see that $\hat{F} = w(l, F)$. By 1.2(b) and (d)

$$\begin{aligned} \theta(f, F, A, A') &= \theta(*, w(l, F), A, A') = \theta(*, *, A, A') + d_1 w(l, F) \\ &= d_1 w(l, F). \end{aligned}$$

(The independence on choice of l follows from $d_1 w(\alpha + l, F) = d_1 \bar{\mu}^* \alpha + d_1 w(l, F)$ and $d_1 \bar{\mu}^* = 0$.)

1.3. LEMMA. *Let $f : K(Z_p, 2n) \rightarrow K(Z_p, 6n)$ be given by $f * \iota_{6n} = \iota_{2n}^3$. Put $E =$ fiber f . Then one has an H -map*

$$f', F' : K(Z_p, 2n-1) \rightarrow \Omega E \approx K(Z_p, 2n-1) \times K(Z_p, 6n-2)$$

and if A, A' are the loop A -structures of $K(Z_p, 2n-1)$ and ΩE respectively then $\theta(f', F', A, A') : K(Z_p, 2n-1) \wedge K(Z_p, 2n-1) \wedge K(Z_p, 2n-1) \rightarrow \Omega^2 E$ factors as

$$K(Z_p, 2n-1) \wedge K(Z_p, 2n-1) \wedge K(Z_p, 2n-1) \xrightarrow{\iota_{2n-1} \otimes \iota_{2n-1} \otimes \iota_{2n-1}} K(Z_p, 6n-3) \rightarrow \Omega^2 E.$$

PROOF. In view of 1.1(a) the existence of the H -map f', F' will follow from the existence of $l : * \sim \Omega f$ so that if $F = k$ is the constant H -structure of Ωf then $w(l, k) = 0$. By Zabrodsky [13] 3.2.2 one has a natural homotopy $\hat{l} : * \sim \Omega \bar{\Delta}$ so that if k is the constant H -structure of the multiplicative map

$$\Omega \bar{\Delta} : \Omega K(Z_p, 2n) \rightarrow \Omega(K(Z_p, 2n) \wedge K(Z_p, 2n))$$

then the adjoint of

$$w(\hat{l}, k) : \Omega K(Z_p, 2n) \wedge \Omega K(Z_p, 2n) \rightarrow \Omega^2(K(Z_p, 2n) \wedge K(Z_p, 2n))$$

is given by

$$\begin{aligned} \Sigma^2(\Omega K(Z_p, 2n) \wedge \Omega K(Z_p, 2n)) &= \Sigma \Omega K(Z_p, 2n) \wedge \Sigma \Omega K(Z_p, 2n) \xrightarrow{(\in \wedge \in) \circ T} \\ &\longrightarrow K(Z_p, 2n) \wedge K(Z_p, 2n) \\ (\in : \Sigma \Omega K(Z_p, 2n) &\rightarrow K(Z_p, 2n) — the evaluation). \end{aligned}$$

Now $f : K(Z_p, 2n) \rightarrow K(Z_p, 6n)$ factors as

$$\begin{aligned} K(Z_p, 2n) &\xrightarrow{\delta} K(Z_p, 2n) \wedge K(Z_p, 2n) \xrightarrow{f_1 \wedge 1} \\ &\longrightarrow K(Z_p, 4n) \wedge K(Z_p, 2n) \xrightarrow{u} K(Z_p, 6n), \end{aligned}$$

$f_1^* \iota_{4n} = \iota_{2n}^2$, $u^* \iota_{6n} = \iota_{4n} \otimes \iota_{2n}$. Choose $l : * \sim \Omega f$ by

$$l = (\mathcal{L}\Omega u) \circ (\mathcal{L}\Omega(f_1 \wedge 1)) \circ \hat{l}.$$

Then one can easily see that

$$w(l, k) = \Omega^2 u \circ \Omega^2(f_1 \wedge 1) \circ w(\hat{l}, k),$$

$$[w(l, k)]_* = u \circ (f_1 \wedge 1) \circ \in \wedge \in \circ T = u \circ (f_1 \circ \in \wedge \in) \circ T.$$

But as $(f_1 \circ \in)_* = \Omega f_1 \sim *$, $w(l, k)_* \sim * \sim w(l, k)$. Now, if $f', F' : K(Z_p, 2n-1) \rightarrow \Omega E$ satisfies $\theta(f, F, A, A') = 0$ then one has a map

$$f'_3 : B_3(K(Z_p, 2n-1)) \rightarrow E$$

(B_3 —the third stage of the classifying space of $K(Z_p, 2n-1)$, see Stasheff [10]), $\pi_*(f'_3)$ -injective. Now $(K(Z_p, 2n), B_3(K(Z_p, 2n-1)))$ is $8n-1$ connected, $\pi_k(E) = 0$ for $k \geq 6n$ and there are no obstructions to extend f'_3 to $f'_\infty : k(Z_p, 2n) \rightarrow E$, $\pi_*(f'_\infty)$ -injective which will yield the contradiction:

$$E \approx K(Z_p, 2n) \times K(Z_p, 6n-1) \quad \text{or} \quad \iota_{2n}^3 = 0.$$

Hence, $0 \neq \theta(f, F, A, A') : K(Z_p, 2n-1) \wedge K(Z_p, 2n-1) \wedge K(Z_p, 2n-1) \rightarrow \Omega^2 E$. This map lifts (in a unique way) to

$$\begin{aligned} 0 \neq \tilde{\theta} : K(Z_p, 2n-1) \wedge K(Z_p, 2n-1) \wedge K(Z_p, 2n-1) &\longrightarrow \\ &\rightarrow K(Z_p, 6n-3) = \Omega^2 K(Z_p, 2n-1). \end{aligned}$$

Hence,

$$\tilde{\theta}^* \iota_{6n-3} = \lambda (\iota_{2n-1} \otimes \iota_{2n-1} \otimes \iota_{2n-1}), \quad 0 \neq \lambda \in Z_p.$$

One can change the representation of $E \approx K(Z_p, 2n-1) \times K(Z_p, 6n-2)$ by self equivalence so that $\lambda = 1$.

1.4. Let x, μ, C and X', μ', C' be homotopy commutative H -spaces. (abr. HC spaces. $C : \mu \sim \mu \circ T$). If $f, F : X, \mu \rightarrow X', \mu'$ is an H -map one has an invariant

$$\gamma(f, F, C, C') : X \wedge X \rightarrow \Omega X'$$

so that:

(a) Composition: If X'', μ'', C'' is a third HC space, $f', F' : X', \mu' \rightarrow X'', \mu''$ an H -map then:

$$\gamma((f', F') \circ (f, F), C, C'') = \Omega \varphi' \circ \gamma(f, F, C, C') + \gamma(f', F', C', C'') \circ (f \wedge f).$$

(b) Dependence on H -structure: If $\alpha : X \wedge X \rightarrow \Omega X'$ then

$$\gamma(f, \alpha + F, C, C') - \gamma(f, F, C, C'') = (1 - T^*)\alpha,$$

$$T : X \wedge X \rightarrow X \wedge X \text{ --- the twisting, } T(x, y) = y, x.$$

(c) If $f, F : X, \mu \rightarrow X', \mu'$ satisfies $f \sim *$ then

$$\gamma(f, F, C, C') = (1 - T^*)w(l, F) \text{ for any choice of } l : * \sim f.$$

1.5. LEMMA. Let $X, \mu, C; X', \mu', C'; X'', \mu'', C''$ be HC spaces, $f, F : X, \mu \rightarrow X', \mu', f', F' : X', \mu' \rightarrow X'', \mu''$ H -maps and $\gamma(f', F', C', C'') = 0$.

Suppose the elements of $[X \wedge X, \Omega X']$ can be halved and multiplication by 2 is injective in $[X \wedge X, \Omega X'']$. If $f' \circ f \sim *$ then F can be chosen so that

$$\gamma((f', F') \circ (f, F), C, C'') = 0.$$

PROOF. Start off with an arbitrary H -structure \hat{F} for f . Now choose

$$F = -\frac{1}{2}\gamma(f, \hat{F}, C, C') + \hat{F}.$$

By 1.4(b)

$$\begin{aligned} \gamma(f, F, C, C') &= \gamma(f, \hat{F}, C, C') - (1 - T^*)\frac{1}{2}\gamma(f, \hat{F}, C, C') \\ &= (1 + T^*)\frac{1}{2}\gamma(f, \hat{F}, C, C'). \end{aligned}$$

By 1.4(c), if $f' \circ f, \tilde{F} = (f', F') \circ (f, F)$ then

$$\gamma((f', F') \circ (f, F), C, C'') = (1 - T^*)w(l, \tilde{F}).$$

Finally by 1.4(a) and as $\gamma(f', F', C', C'') = 0$

$$\begin{aligned} \gamma[(f', F') \circ (f, F), C, C''] &= \Omega f' \gamma(f, F, C, C') \\ &= (1 + T^*)[\frac{1}{2}\Omega f' \gamma(f, \hat{F}, C, C')]. \end{aligned}$$

As multiplication by 2 is injective in $[X \wedge X, \Omega X'']$ one can easily see that $\text{im}(1 + T^*) \cap \text{im}(1 - T^*) = 0$ and $\gamma((f', F') \circ (f, F), C, C'') = 0$.

2. Proof of Theorem 1

Consider the following commutative diagram of ∞ -loop spaces and maps:

$$\begin{array}{ccccc}
 K(Z_3, N + 4n - 1) & \xrightarrow{\mathcal{P}^a} & K(Z_3, N + 4n + 4a - 1) & & \\
 \downarrow & & \downarrow & \searrow & \\
 E_1 = \text{fiber}(\mathcal{P}^n) & \xrightarrow{h} & \hat{E}_1 = \text{fiber } \mathcal{P}^{n+a} & \xrightarrow{\hat{v}} & K(Z_3, N + 4n + 11) \\
 (A)_N & \downarrow r_1 & \downarrow & & \downarrow \hat{r}_1 \\
 K(Z_3, N) & \xrightarrow{1} & K(Z_3, N) & \xrightarrow{v} & E_0 = \text{fiber } (\mathcal{P}^{3-a}) \\
 \downarrow (\pm \mathcal{P}^n) & & \downarrow & & \uparrow \\
 K(Z_3, N + 4n) & \xrightarrow{\mathcal{P}^a} & K(Z_3, N + 4n + 4a) & \xrightarrow{\mathcal{P}^{3-a}} & K(Z_3, N + 4n + 12)
 \end{array}$$

As $\mathcal{P}^{3-a}\mathcal{P}^a = 0$, $\hat{v} \circ h$ factors as $w \circ r_1$ for some

$$w : K(Z_3, N) \rightarrow K(Z_3, N + 4n + 11).$$

For $N = 2n + 2a - 1$, $\hat{E}_1 \approx K(Z_3, 2n + 2a - 1) \times K(Z_3, 6n + 6a - 2)$ and by 1.3 this is an H -equivalence with respect to the ∞ -loop multiplication of \hat{E}_1 and the product multiplication on $K(Z_3, 2n + 2a - 1) \times K(Z_3, 6n + 2a - 2)$.

If $i, F : K(Z_3, 2n + 2a - 1) \rightarrow K(Z_3, 2n + 2a - 1) \times K(Z_3, 6n + 6a - 2) \approx \hat{E}_1$ is an H -map A, A' the ∞ - Ω HA structures of $K(Z_3, 2n + 2a - 1)$ and \hat{E}_1 respectively, then by 1.3 we know $\theta(i, F, A, A')$: If $K_0 = K(Z_3, 2n + 2a - 1)$ then

$$\begin{array}{ccc}
 K_0 \wedge K_0 \wedge K_0 & \xrightarrow{\iota \otimes \iota \otimes \iota} & K(Z_3, 6n + 6a - 3) \\
 \downarrow \theta(i) = \theta(i, F, A, A') & & \downarrow \Omega \hat{r}_1 \\
 \Omega \hat{E}_1 & \approx \Omega K_0 \times K(Z_3, 6n + 6a - 3).
 \end{array}$$

Consider the following part of diagram $(A)_N$ for $N = 2n + 2a - 1$:

$$\begin{array}{ccc}
 & K(Z_3, 6n + 6a - 2) & \\
 & \downarrow \hat{r}_1 & \downarrow \mathcal{P}^{3-a} \\
 E_1 & \xrightarrow{h} & \hat{E}_1 \approx K(Z_3, 2n + 2a - 1) \times K(Z_3, 6n + 6a - 2) & \xrightarrow{\hat{v}} & K(Z_3, 6n + 2a + 10)
 \end{array}$$

Then:

$$\hat{v}^* \iota_{6n+2a+10} = z \otimes 1 + 1 \otimes \mathcal{P}^{3-a} \iota_{6n+6a-2},$$

$z \in PH^{6n+2a+10}(K(Z_3, 2n + 2a - 1), Z_3)$. Let z denote its stable class as well:

$$z \in PH^{N+4n+11}(K(Z_3, N), Z_3).$$

Replacing v by $v - \hat{r}_1 z$ if necessary (and altering \hat{v} and w accordingly) one may actually assume that $z = 0$ and for $N = 2n + 2a - 1$

$$\hat{v}^* \iota = 1 \otimes \mathcal{P}^{3-a} \iota.$$

If $N = 2n - 1$ one has $E_1 \approx K(Z_3, 2n - 1) \times K(Z_3, 6n - 2)$, $\tilde{E}_1 \approx K(Z_3, 2n - 1) \times K(Z_3, 6n + 4a - 2)$, $h^*(1 \times \iota_{6n+4a-2}) = y \otimes 1 + 1 \otimes \mathcal{P}^a \iota_{6n-2}$, $y \in PH^{6n+4a-2}(K(Z_3, 2n - 1), Z_3)$ and $h^* \circ \hat{v}^* \iota = h^*(1 \otimes \mathcal{P}^{3-a} \iota_{6n+4a-2}) = \mathcal{P}^{3-a} y \otimes 1$.

Obviously $\sigma^{N-2n+1} w = \mathcal{P}^{3-a} y$. Let $\hat{y} \in H^{N+4n+4a-1}(K(Z_3, N), Z_3)$ denote the stable class of y : $\sigma^{N-2n+1} \hat{y} = y$. Then $w - \mathcal{P}^{3-a} \hat{y} \in \ker \sigma^{N-2n+1}$. But $\sigma^{N-2n+1}: H^{N+4n+11}(K(Z_3, N), Z_3) \rightarrow H^{6n+10}(K(Z_3, 2n - 1), Z_3)$ is injective, hence, $w = \mathcal{P}^{3-a} \hat{y}$. Now alter h in (A) _{N} by $-\hat{j}_1 \circ \hat{y} \circ r_1$ if necessary and as

$$\hat{v}(h - \hat{j}_1 \circ \hat{y} \circ r_1) = \hat{v} \circ h - \hat{v} \circ \hat{j}_1 \circ \hat{y} \circ \hat{r}_1 = w \circ r_1 - \mathcal{P}^{3-a} \hat{y} \circ r_1 = 0$$

one could have assumed $\hat{v} \circ h \sim *$. Put $x_1 = r_1^* \iota_{2n+2a-1} \in H^{2n+2a-1}(E_1, Z_3)$, $y_1 = h^*(1 \otimes \iota_{6n+6a-2}) \in H^{6n+6a-2}(E_1, Z_3)$ then $\hat{\phi}_1 = (x_1, E_1, y_1)$ defines an operation with domain $\ker \mathcal{P}^n | H^{2n+2a-1}(_, Z_3)$.

$\hat{v}^* \iota_{6n+2a+10} = 1 \otimes \mathcal{P}^{3-a} \iota_{6n+6a-2}$ and $\hat{v} \circ h \sim *$ imply $\mathcal{P}^{3-a} y_1 = 0$, $0 = \langle \mathcal{P}^{3-a}, \mathcal{P}^a, \mathcal{P}^n \rangle$ and (i) follows.

$\hat{v} \circ h \sim *$ implies that h factors through fiber \hat{v} which for $N = 2n + 2a - 1$ is equivalent to

$$K(Z_3, 2n + 2a - 1) \times \tilde{E},$$

$$\tilde{E} = \text{fiber}[(\mathcal{P}^{3-a}): K(Z_3, 6n + 6a - 2) \rightarrow K(Z_3, 6n + 2a + 10)].$$

Now the operation $\phi = \phi_a$ of Theorem 1 (ii) is defined in the space $E_2 = \text{fiber}[(y_1): E_1 \rightarrow K(Z_3, 6n + 6a - 2)]$ as its universal example. An alternative and equivalent definition of E_2 can be given in terms of the following pull back diagram:

$$\begin{array}{ccccc}
 K(Z_3, 6n + 6a - 3) & \xrightarrow{\mathcal{P}^{3-a}} & K(Z_3, 6n + 2a + 9) & & \\
 \downarrow j_2 & & \downarrow & & \\
 E_2 & \xrightarrow{h_2} & K(Z_3, 2n + 2a - 1) \times K(Z_3, 6n + 2a + 9) & \xrightarrow{p_1} & K(Z_3, 2n + 2a - 1) \\
 \downarrow r_2 \quad \text{pull back} & & \downarrow \times \bar{j} \quad \text{pull back} & & \downarrow i \\
 E_1 & \xrightarrow{f} & K(Z_3, 2n + 2a - 1) \times \tilde{E} & \xrightarrow{f'} & K(Z_3, 2n + 2a - 1) \times K(Z_3, 6n + 6a - 2) \\
 & & \boxed{\quad} & &
 \end{array}$$

ϕ_a then has the universal example (\hat{x}, E_2, y) , $\hat{x} = r_2^* r_1^* \iota_{2n+2a-1}$, $y = (p_1 \circ h_2)_*^*$. The bottom row consists of ∞ - Ω spaces and maps and are given the corresponding H , HA and HC structures. i is an H -map and any choice of H -structure for i will yield H -structures for the spaces in the second row. Thus, the H -structure of $K(Z_3, 2n+2a-1) \times K(Z_3, 6n+2a+9)$ could be considered as induced either as a pull back or equivalently as the fiber of $\hat{v} \circ i$ whose H -structure is induced by the ∞ - Ω structure of \hat{v} and a choice of an H -structure for i . By 1.5 such an H -structure can be chosen so that $\gamma(\hat{v} \circ i) = 0$ and the H -structure induced on $K(Z_3, 2n+2a-1) \times K(Z_3, 6n+2a+9)$ is HC : If this H -structure is given by a twisting

$$\tilde{w} : K(Z_3, 2n+2a-1) \wedge K(Z_3, 2n+2a-1) \rightarrow K(Z_3, 6n+2a+9)$$

then $\tilde{w} \circ T \sim \tilde{w}$. By 1.2, and diagram (B), if μ is the multiplication in $K(Z_3, 2n+2a-1)$ then (omitting the H -structures of maps and HA structures of spaces) recalling that $\theta(\hat{v}) = 0$:

$$\begin{aligned} (\bar{\mu}^* \otimes 1 - 1 \otimes \bar{\mu}^*) \tilde{w} &= \theta(\hat{v} \circ i) = \theta(\hat{v})(i \wedge i \wedge i) + \Omega v \circ \theta(i) \\ &= \Omega \hat{v} \circ \theta(i) = (\Omega(\hat{v} \circ \hat{j}_1))_*(\iota \otimes \iota \otimes \iota) = \mathcal{P}^{3-a}(\iota \otimes \iota \otimes \iota) \\ &= \begin{cases} \mathcal{P}^1 \iota \otimes \iota \otimes \iota + \iota \otimes \mathcal{P}^1 \iota \otimes \iota + \iota \otimes \iota \otimes \mathcal{P}^1 \iota & \text{for } a = 2, \\ \mathcal{P}^1 \iota \otimes \mathcal{P}^1 \iota \otimes \iota + \mathcal{P}^1 \iota \otimes \iota \otimes \mathcal{P}^1 \iota + \iota \otimes \mathcal{P}^1 \iota \otimes \mathcal{P}^1 \iota \\ + \mathcal{P}^2 \iota \otimes \iota \otimes \iota + \iota \otimes \mathcal{P}^2 \iota \otimes \iota + \iota \otimes \iota \otimes \mathcal{P}^2 \iota & \text{for } a = 1. \end{cases} \end{aligned}$$

If $w_0 : K(Z_3, 2n+2a-1) \wedge K(Z_3, 2n+2a-1) \rightarrow K(Z_3, 6n+2a+9)$ is given by

$$w_0 = \begin{cases} \mathcal{P}^1 \iota \cdot \iota \otimes \iota + \iota \otimes \mathcal{P}^1 \iota \cdot \iota & \text{for } a = 2 \\ \iota \cdot \mathcal{P}^1 \iota \otimes \mathcal{P}^1 \iota + \mathcal{P}^1 \iota \otimes \iota \cdot \mathcal{P}^1 \iota + \mathcal{P}^2 \iota \cdot \iota \otimes \iota + \iota \otimes \mathcal{P}^2 \iota \cdot \iota & \text{for } a = 1 \end{cases}$$

then $\tilde{w} - w_0 \in \ker(\bar{\mu}^* \otimes 1 - 1 \otimes \bar{\mu}^*) \cap \ker(1 - T^*)$ which implies that $\tilde{w} - w_0 \in \text{im } \bar{\mu}^*$. Hence, altering $K(Z_3, 2n+2a-1) \times K(Z_3, 6n+2a+9)$ by a self equivalence if necessary one may assume $\tilde{w} = w_0 \cdot \langle \hat{x}, E, y \rangle$ with $E = E_2$, $\hat{x} = (r_1 \circ r_2)^* \iota_{2n+2a-1}$, $y = h_2^*(1 \otimes \iota_{6n+2a+9})$ is the desired operation.

3. Proof of Theorem 2

3.1. LEMMA. *Let X, μ be a mod p H -space with $H^*(X, Q; \mu)$ -primitively generated. Suppose either X is finite dimensional (mod p) or $\pi_n(X) = 0$ for $n > N(X)$.*

Let λ be any integer and ϕ_λ the λ -th power map induced by μ . (For $\lambda = -1$, Φ_{-1} is the multiplicative inverse; for $\lambda > 0$,

$$\phi_\lambda = \mu \circ (\mu \times 1) \circ \cdots \circ (\mu \times 1 \times \cdots \times 1) \circ (\Delta \times 1 \times \cdots \times 1) \circ \cdots \circ (\Delta \times 1) \circ \Delta;$$

for $\lambda < 0$ take $\phi_\lambda = \phi_{-1} \circ \Phi_{-\lambda}$.)

Then there exist an H -space $\hat{X}, \hat{\mu} \bmod p$ equivalent to X, μ , and a map $\hat{\phi}_\lambda : \hat{X} \rightarrow \hat{X}$ so that

$$\begin{array}{ccc} X & \xrightarrow{\phi_\lambda} & X \\ \approx_p \downarrow & & \downarrow \approx_p \\ \hat{X} & \xrightarrow{\hat{\phi}_\lambda} & \hat{X} \end{array}$$

is (homotopy) commutative and so that for some r , $(\hat{\phi}_\lambda)^{p^r}$ is an H -map. Moreover, $H^*(\hat{X}, Q; \hat{\mu}) \approx H^*(X, Q; \mu)$ as Hopf algebras.

PROOF. This is basically a special case of an H -space with identity (Zabrodsky [15] 4.5). One starts by approximating X by an H -map

$$\psi_0 : X \xrightarrow{\approx^0} \prod_j K(Z, n_j) = K_0$$

K_0 having the product multiplication μ_0 . Decompose ψ_0 as

$$X \xrightarrow{\approx^p} X(p) = \hat{X} \xrightarrow[\psi'']{\approx^{p-p}} K_0$$

(Zabrodsky [13] 4.3) and \hat{X} then admits an H -structure $\mu(p)$ and a self map $\hat{\phi}_\lambda$ induced by μ and ϕ_λ respectively. One has a commutative diagram

$$\begin{array}{ccccc} & & \mathcal{F} & & \\ & \swarrow & & \searrow & \\ \hat{X} \vee \hat{X} & \longrightarrow & \hat{X} \times \hat{X} & \xrightarrow{\mu_0 \circ (\psi'' \times \psi'')} & K_0 \xleftarrow{\psi''} \hat{X} \\ \downarrow \hat{\phi}_\lambda \vee \hat{\phi}_\lambda & \downarrow \hat{\phi}_\lambda \times \hat{\phi}_\lambda & & \downarrow \lambda.1 & \downarrow \hat{\phi}_\lambda \\ \hat{X} \vee \hat{X} & \longrightarrow & \hat{X} \times \hat{X} & \xrightarrow{\mu_0 \circ (\psi'' \times \psi'')} & K_0 \xleftarrow{\psi''} \hat{X} \end{array}$$

As $\mu(p) : \hat{X} \times \hat{X} \rightarrow \hat{X}$ is a lifting of $\mu_0(\psi'' \times \psi'')$ one can apply Zabrodsky [15] theorem 3.1 (with the (3.1.b)" hypothesis and remark 3.10.3) to obtain a lifting $\hat{\mu} : \hat{X} \times \hat{X} \rightarrow \hat{X}$, $\hat{\mu} | \hat{X} \vee \hat{X} = \mathcal{F}$ and $(\hat{\phi}_\lambda)^m \circ \hat{\mu} \sim \hat{\mu} \circ (\phi_\lambda \times \phi_\lambda)^m$ where $m = \prod_{r \leq N(x)} \exp \pi_r(\text{fiber } \psi'')$, hence m is a power of p and 3.1 follows. (The fact that ψ'' is a $\hat{\mu} - \mu_0$ H -map implies $H^*(\hat{X}, Q; \mu(p)) = H^*(X, Q; \hat{\mu})$.)

3.2. LEMMA. *Let p be an odd prime. Given H -spaces $X, \hat{\mu}, Y, \mu, Y_0, \mu_0$ with self H -maps $\phi : X \rightarrow X, \phi' : Y \rightarrow Y$ and $\phi'_0 : Y_0 \rightarrow Y_0$. Assume $QH^{\text{even}}(X, Z_p) = 0, QH^*(Y, Z_p) = -1, \pi_*(\phi') \otimes Z_p = -1, \pi_*(\phi'_0) \otimes Z_p = -1$. Let $g : Y \xrightarrow{\sim} Y_0, f_0 : X \rightarrow Y_0$ be H -maps and $\phi' - \phi'_0, \phi - \phi'_0$ maps respectively, i.e.,*

$$g \circ \phi' \sim \phi'_0 \circ g; \quad f_0 \circ \phi \sim \phi'_0 \circ f_0.$$

Assuming $\pi_n(\text{fiber } g) = 0$ for n -odd and for $n \geq N$ then if f_0 lifts to a map $X \rightarrow Y$ it lifts to an H -map. Moreover any $\phi^{p^r} - (\phi')^{p^r}$ lifting (i.e., $f : X \rightarrow Y$ with $f \circ \phi^{p^r} \sim (\phi')^{p^r} \circ f$) is an H -map.

PROOF. By Zabrodsky [15] 3.1 if f_0 lifts it lifts to a $\phi^{p^r} - (\phi')^{p^r}$ map, hence suffices to prove that every such map is an H -map. Obviously one may conveniently assume $r = 0$.

Given a $\phi - \phi'$ map $f : X \rightarrow Y$ consider its H -deviation $HD(f) = HD(f, \hat{\mu}, \mu) : X \wedge X \rightarrow Y$. As g and f_0 are H -maps $f_0 \sim g \circ f, g \circ HD(f) \sim *$ and $HD(f) \sim j \circ w, w : X \wedge X \rightarrow V = \text{fiber } g, j : V \rightarrow Y$. Decompose V as follows:

$$* = V^{(m)} \rightarrow V^{(m-1)} \rightarrow \dots \rightarrow V^{(k)} \rightarrow V^{(k-1)} \rightarrow \dots \rightarrow V^{(0)} = V$$

$V^{(k)} m_k - 1$ connected, $V^{(k+1)} \rightarrow V^{(k)}$ is the fiber of $r_k : V^{(k)} \rightarrow K(G_k, m_k)$, $G_k = \pi_{m_k}(V^{(k)}) \otimes Z_p, \pi_{m_k}(r_k)$ the obvious morphism. Note that by assumption m_k are even.

Suppose inductively that $HD(f)$ lifts to $w_k : X \wedge X \rightarrow V^{(k)}, HD(f) = j_k \circ w_k, j_k : V^{(k)} \rightarrow Y$. Now, $HD(f) \circ \Lambda = D_{\mu \circ (f \times f), f \circ \hat{\mu}}$ and as ϕ, ϕ' are H -maps and f is a $\phi - \phi'$ map one has: $HD(f) \circ (\phi \wedge \phi') = \phi' \circ HD(f)$.

ϕ', ϕ'_0 induce self maps $\phi'_k : V^{(k)} \rightarrow V^{(k)}$ and j_k is a $\phi'_k - \phi'$ map as well as an H -map. Hence:

$$\begin{aligned} * &= D_{HD(f) \circ (\phi \wedge \phi'), \phi' \circ HD(f)} = D_{j_k \circ w_k \circ (\phi \wedge \phi'), \phi' \circ j_k \circ w_k} \\ &= D_{j_k \circ w_k \circ (\phi \wedge \phi), j_k \circ \phi'_k \circ w_k} = j_k D_{w_k \circ (\phi \wedge \phi), \phi'_k \circ w_k} \end{aligned}$$

and one can replace w_k by

$$\hat{w}_k = w_k + \frac{p-1}{2} D_{w_k \circ (\phi \wedge \phi), \phi'_k \circ w_k}.$$

Now, $\pi_*(\phi') \otimes Z_p = -1 = \pi_*(\phi'_0) \otimes Z_p$ implies (possibly after some p^s iterations) $\pi_*(\phi_k) \otimes Z_p = -1$ and hence $-r_k = r_k \circ \phi'_k$.

$$r_k \circ \hat{w}_k = r_k \circ w_k + \frac{p-1}{2} [r_k \circ w_k \circ \phi \wedge \phi - r_k \circ \phi'_k \circ w_k]$$

$$= r_k \circ w_k + \frac{p-1}{2} [r_k \circ w_k \circ \phi \wedge \phi + r_k \circ w_k],$$

$$r_k \circ w_k \in H^{m_k}(X \wedge X, G_k) = H^{m_k}(X \wedge X, \mathbb{Z}_p) \otimes G_k.$$

As $QH^{\text{even}}(X, \mathbb{Z}_p) = 0$, $QH^*(\phi, \mathbb{Z}_p) = -1$ it follows that $H^{\text{even}}(\phi \wedge \phi, \mathbb{Z}_p) = 1 = H^{m_k}(\phi \wedge \phi, G_k)$ and $r_k \circ w_k \circ (\phi \wedge \phi) = r_k \circ w_k$.

Hence $r_k \circ \hat{w}_k = pr_k \circ w_k = 0$ and \hat{w}_k lifts to $w_{k+1}: X \wedge X \rightarrow V_{k+1}$. $V_m = *$ implies 3.2.

3.3. PROOF OF THEOREM 2. Given X, μ a new multiplication $\hat{\mu}$ as in 3.1 for $p = 3$ and $\lambda = -1$: ϕ_{-1} —the multiplicative inverse of μ (and essentially of $\hat{\mu}$ as well). As $H^*(X, Q, \mu) = H^*(X, Q, \hat{\mu})$ and $H^*(X, Z)$ is 3-torsion free $H^*(X, \mathbb{Z}_3, \mu) = H^*(X, \mathbb{Z}_3, \hat{\mu})$ as a Hopf algebra, $QH^*(\phi_{-1}, \mathbb{Z}_3) = -1 = PH^*(\phi_{-1}, \mathbb{Z}_3)$.

Let $x \in PH^{6n+2a-1}(X, \mathbb{Z}_3)$ be realized by an H -map $f_0: X \rightarrow K(\mathbb{Z}_3, 6n+2a-1) = K_0$. Obviously $f_0 \circ \phi_{-1} \sim \phi'_0 \circ f_0$, $\phi'_0 = -1: K_0 \rightarrow K_0$. Let E_1 be the space in (A)_N (the proof of Theorem 1) for $N = 6n+2a-1$, and replace n by $3n$. Let $\phi': E_1 \rightarrow E_1$ be the multiplicative inverse of the loop multiplication in E_1 . As fiber $E_1 \rightarrow K_0$ is $K(18n+2a-2, \mathbb{Z}_3)$, by 3.2, if f_0 lifts to $f_1: X \rightarrow E_1$ it lifts to an H -map. f_0 lifts if and only if $\mathcal{P}^{3n}x = 0$. $E_2 \rightarrow E_1$ in (A)_N is the fibration included by an H -map $E_1 \rightarrow K(\mathbb{Z}_3, 18n+6a-2)$ and as $PH^{18n+6a-2}(X, \mathbb{Z}_3) = 0$ f_1 lifts to $f_2: X \rightarrow E_2$.

$$HD(f_2) = j_2 \cdot w, \quad w: X \wedge X \rightarrow K(\mathbb{Z}_3, 18n+6a-3)$$

and

$$\bar{\hat{\mu}}^* f_2^* y = (f_2^* \otimes f_2^*) \bar{\mu}^* v + \mathcal{P}^{3-a} w,$$

hence:

$$(\alpha) \quad a = 2, |x| = 6n + 3$$

$$(\alpha.1) \quad \bar{\hat{\mu}}^* f_2^* y = \mathcal{P}^1 x \cdot x \otimes x + x \otimes \mathcal{P}^1 x \cdot x + \mathcal{P}^1 w$$

reduce $H^*(X, \mathbb{Z}_3)$ by the ideal I generated by $\bigoplus_{m > 6n+7} PH^m(X, \mathbb{Z}_3)$.

$$(\beta) \quad a = 1, |x| = 6n + 1$$

$$(\beta.1) \quad \begin{aligned} \bar{\hat{\mu}}^* f_2^* y &= \mathcal{P}^2 x \cdot x \otimes x + x \otimes \mathcal{P}^2 x \cdot x \\ &+ x \cdot \mathcal{P}^1 x \otimes \mathcal{P}^1 x + \mathcal{P}^1 x \otimes x \cdot \mathcal{P}^1 x + \mathcal{P}^2 w \end{aligned}$$

and reduce by the ideal I generated by $\bigoplus_{m > 6n+5} PH^m(X, Z_3)$ (and $(\beta.1)$ thus loses its first two terms in the left hand side of the equation).

In both cases if $\mathcal{P}^1 x \notin \text{im } \mathcal{P}^2$ the quotient algebra $H^*(X, Z_3)/I$ has the form $A \otimes \Lambda(x, \mathcal{P}^1 x)$ as an algebra over $Z_p[\mathcal{P}^1]/(\mathcal{P}^1)^3 \subset \mathcal{A}(3)$. Reducing mod A one will have $(\alpha.1)$ or $(\beta.1)$ holding in $\Lambda(x, \mathcal{P}^1 x)$ which is impossible.

REFERENCES

1. W. Browder, *Torsion in H-spaces*, Ann. of Math. **74** (1961), 24–51.
2. W. Browder, *Homotopy commutative H-spaces*, Ann. of Math. **75** (1962), 283–311.
3. J. Harper and A. Zabrodsky, *Mod p H-spaces of low rank*, to appear.
4. J. Hubbuck, *Generalized cohomology operations and H-spaces of low rank*, Trans. Amer. Math. Soc. **141** (1969), 335–360.
5. T. Kudo and S. Araki, *Topology of H_n-spaces and H-squaring operations*, Mem. Fac. Sci. Kyusyu Univ. Ser. A. **10** (1956), 85–120.
6. J. Lin, *Torsion in H-spaces I*, Ann. of Math. **103** (1976), 456–487.
7. M. Mimura, *Quasi-p-regularity of symmetric spaces*, Michigan Math. J. **18** (1971), 65–73.
8. M. Mimura, *On the mod p H-structures of spherical fibrations*, in *Manifolds — Tokyo 1973*, University of Tokyo Press, 1975.
9. J. Stasheff, *On extension of H-spaces*, Trans. Amer. Math. Soc. **105** (1962), 126–135.
10. J. Stasheff, *Homotopy associativity of H-spaces I and II*, Trans. Amer. Math. Soc. **108** (1963), 275–292 and 293–312.
11. E. Thomas, *Steenrod squares and H-spaces*, Ann. of Math. **77** (1963), 306–317.
12. A. Zabrodsky, *Implications in the cohomology of H-spaces*, Illinois J. Math. **14** (1970), 363–375.
13. A. Zabrodsky, *Hopf Spaces*, Notas de Mathematica, North Holland Math. Studies **22**, 1976.
14. A. Zabrodsky, *Power Spaces*, mimeographed, The Institute for Advanced Studies, Princeton, N. J.
15. A. Zabrodsky, *Endomorphisms in the homotopy category*, Mimeo graphed, The Hebrew University of Jerusalem, Israel.

THE HEBREW UNIVERSITY OF JERUSALEM
JERUSALEM, ISRAEL

AND

THE UNIVERSITY OF CALIFORNIA
SAN DIEGO, CALIFORNIA, USA